• Home
  • Salt, hydrothermal process & rifting
    • Salt activities & ocean rifiting
    • Red Sea salt formations
    • Salt accumulation & hydrothermal process - Part 1 - Understanding
    • Salt accumulation & hydrothermal process - Part 2 - Application
  • A new method for assessing fault seal integrity
    • Using geometrical intersections between faults and gas chimneys
    • Illustraction - intersection between faults & gas chimneys
  • New type of gas chimney
    • New type of gas chimney - "Linear Chimney" (Planar chimney)
    • Formation of Linear Chimneys controlled by anisotropic stresses, faults and hydrocarbon migrations
    • Alternative mechanism of chimneys formation along pre-existing fractures
  • Linear Chimneys & Pockmarks vs. Polygonal Faults
    • Linear Chimneys & Pockmarks vs. Polygonal Faults
    • Permeability of polygonal faults vs. gas chimneys
    • Presentation with illustrations
    • Detailed Description & Interpretation
  • New types of pockmarks
    • New types of pockmarks
    • Advancing pockmark arrays
    • Hydrate collapsed pockmark
  • Positive High Amplitude Anomalies PHAA
    • Positive High Amplitude Anomalies PHAA
    • Variation of methane flux vs. pockmark, chimneys & methane-relate carbonates
  • Calibration - PHAA vs. Ground truth
    • Calibration - PHAA vs. Ground truth
    • Seismic Expression vs. Outcrop
  • Methane-Related Carbonate Tube
    • Methane-Related Carbonate Tube
    • MDAC Tube Classification
    • MDAC Tube outcrop
    • Petrography of MDAC Tube
  • Gas Migration Mechanisms Revealed by Seep Carbonate Paragenesis
  • Seep Photo Albums
    • Seep Carbonate California Coast
    • Mud Volcano Taiwan Island
    • Mud Volcano Azerbaijan >
      • Dashgil mud volcano
      • Garadagh mud volcano
      • Lokbatan mud volcano
      • Kotyrdag mud volcano
      • Lake Masasyr-Gel mud volcano
      • Perigishgyl mud volcano
  • IAS 2018 Field Trip Album
    • IAS Field Trip June 2018 >
      • IAS Field Trip June 2018
      • Program
  • References & Recommended Reading
  • Research Group Members
  • Research core values
  • Disclaimer
  • Contact
  • Blog
Fluid Venting System - Hydrocarbon Leakage Indicators
Picture
Picture


Download link 1

Picture


Download link 2

Large salt accumulations as a consequence of hydrothermal processes associated with ‘Wilson cycles’:
​A review Part 1: Towards a new understanding


Martin Hovland, Håkon Rueslåtten, Hans Konrad Johnsen 

2017



​The formation of large salt deposits is observed especially in areas with a geological history of high tectonic activity. Over the last decade it has become a well-established fact that heavy brines form and solid salts precipitate, due to the thermodynamic and physico-chemical properties of seawater at high temperatures and pressures encountered within hydrothermal systems. This article reviews the modern theoretical and experimental research behind these findings, and also describes geological settings that most likely cause brine- and salt-forming hydrothermal processes to occur. This analysis has led to the identification of a set of specific conditions, properties, and processes (referred to as Conceptual elements) that are used to explain the often complex processes of brine behavior that leads to hydrothermal formation of solid salt. The main objective of this review is to present hydrothermal conditions known to occur during Wilson cycles: subduction, collision, and rifting, e.g., zones of repeated tectonic unrest, where brines (commonly derived from seawater) are concentrated into heavy brines and precipitate solid salts. The internal heat of the Earth and its interaction with deeply-circulating seawater in hydrothermal systems and also the immense recycling of crustal materials, including porous oceanic crust and serpentinite (hydrated) rocks via mantle processes may lead to the formation of salt accumulations. It is also acknowledged that such brines and solid salts may often be stored sub-surface for long time periods, extending from one Wilson cycle to another. Thus, on the basis of this analysis, it is cautiously suggested that large amounts of salts ‘hidden’ inside subduction zones may appear on the surface during subsequent rifting and oceanization phases. In Part 2 of this review, the Conceptual elements, which are described and discussed herein (Part 1) are applied to selected cases, including the Andean Mountains, the East African Rift, the Red Sea Rift, and other locations.

Large salt accumulations as... by on Scribd

Powered by Create your own unique website with customizable templates.